My son had a 1/2 day of school today due to the snow storm. Instead of having him work through problems form Art of Problem Solving’s Algebra book, I thought it would be fun to do a quadratic formula project since we had more time than usual.

I was a little brain dead as the spelling in the project will show, but still this was a nice project showing a neat application of the quadratic formula.

We started by looking at a common continued fraction and seeing how the Fibonacci numbers emerged:

Next we tried to see how to find the exact value of this continued fraction – here is where the quadratic formula made a surprise appearance:

Finally, we tried to decide which of the two roots of our quadratic equation were likely to be the value of the continued fraction. We had a slight detour here when my son thought that was less than 1, but we got back on track after that:

It was definitely fun to show my son how the quadratic formula can appear outside of the problems in his textbook ðŸ™‚